Reasoning about Distributed Knowledge of Groups with Infinitely Many Agents

Autor: Guzmán, Michell, Knight, Sophia, Quintero, Santiago, Ramírez, Sergio, Rueda, Camilo, Valencia, Frank
Přispěvatelé: Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), University of Minnesota [Duluth], University of Minnesota System, Concurrency, Mobility and Transactions (COMETE), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Pontificia universidad Javeriana, Cali, Ambientes VISuales de Progamación Aplicativa (AVISPA Resarch Group), Pontificia Universidad Javeriana (PUJ), FACTS: Foundational Approach to Cognition in Today’s Societ (C19M03) - ECOS-NORD France - Colombie (2018) - Université Paris 13Project CLASSIC (125171250031) - Colciencias, Wan Fokkink, Rob van Glabbeek, Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: CONCUR 2019-30th International Conference on Concurrency Theory
CONCUR 2019-30th International Conference on Concurrency Theory, Aug 2019, Amsterdam, Netherlands. pp.1-29, ⟨10.4230/LIPIcs.CONCUR.2019.29⟩
Popis: International audience; Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic information in concurrent systems. We develop the theory of scs to reason about the distributed information of potentially infinite groups. We characterize the notion of distributed information of a group of agents as the infimum of the set of join-preserving functions that represent the spaces of the agents in the group. We provide an alternative characterization of this notion as the greatest family of join-preserving functions that satisfy certain basic properties. We show compositionality results for these characterizations and conditions under which information that can be obtained by an infinite group can also also be obtained by a finite group. Finally, we provide algorithms that compute the distributive group information of finite groups.
Databáze: OpenAIRE