Some properties of complex matrix-variate generalized Dirichlet integrals
Autor: | Sebastian George, Joy Jacob, Arak M. Mathai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: |
Pure mathematics
General Mathematics Dirichlet L-function Mathematics::Analysis of PDEs 02 engineering and technology 01 natural sciences 010104 statistics & probability symbols.namesake Dirichlet's principle FOS: Mathematics 0202 electrical engineering electronic engineering information engineering 60E05 0101 mathematics Dirichlet series Mathematics 15A57 62E15 62H10 Dirichlet conditions Mathematical analysis 020206 networking & telecommunications Dirichlet's energy Mathematics - Logic Mathematics::Spectral Theory Dirichlet integral Dirichlet kernel Generalized Dirichlet distribution symbols Logic (math.LO) |
Popis: | Dirichlet integrals and the associated Dirichlet statistical densities are widely used in various areas. Generalizations of Dirichlet integrals and Dirichlet models to matrix-variate cases, when the matrices are real symmetric positive definite or hermitian positive definite, are available \cite{4}. Real scalar variables case of the Dirichlet models are generalized in various directions. One such generalization of the type-2 or inverted Dirichlet is looked into in this article. Matrix-variate analogue, when the matrices are hermitian positive definite, are worked out along with some properties which are mathematically and statistically interesting. 8 pages |
Databáze: | OpenAIRE |
Externí odkaz: |