VISDA: an open-source caBIG™ analytical tool for data clustering and beyond

Autor: Michael Nebozhyn, Malik Yousef, Yitan Zhu, Jiajing Wang, Jianhua Xuan, Louise C. Showe, Yue Joseph Wang, Robert Clarke, Huai Li, Michael Showe
Rok vydání: 2007
Předmět:
Zdroj: Bioinformatics. 23:2024-2027
ISSN: 1367-4811
1367-4803
Popis: Summary: VISDA (Visual Statistical Data Analyzer) is a caBIG™ analytical tool for cluster modeling, visualization and discovery that has met silver-level compatibility under the caBIG initiative. Being statistically principled and visually interfaced, VISDA exploits both hierarchical statistics modeling and human gift for pattern recognition to allow a progressive yet interactive discovery of hidden clusters within high dimensional and complex biomedical datasets. The distinctive features of VISDA are particularly useful for users across the cancer research and broader research communities to analyze complex biological data.Availability: http://gforge.nci.nih.gov/projects/visda/Contact: yuewang@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Databáze: OpenAIRE