Tropical tangents for complete intersection curves
Autor: | Nathan Ilten, Yoav Len |
---|---|
Přispěvatelé: | University of St Andrews. Pure Mathematics |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | We consider the tropicalization of tangent lines to a complete intersection curve $X$ in $\mathbb{P}^n$. Under mild hypotheses, we describe a procedure for computing the tropicalization of the image of the Gauss map of $X$ in terms of the tropicalizations of the hypersurfaces cutting out $X$. We apply this to obtain descriptions of the tropicalization of the dual variety $X^*$ and tangential variety $\tau(X)$ of $X$. In particular, we are able to compute the degrees of $X^*$ and $\tau(X)$ and the Newton polytope of $\tau(X)$ without using any elimination theory. Comment: 49 pages, 6 figures, 9 tables |
Databáze: | OpenAIRE |
Externí odkaz: |