A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo
Autor: | Ellen A. A. Nollen, Jeremy N. Skepper, Gabriele S. Kaminski Schierle, Carlos W. Bertoncini, Simon Schlachter, Stefanie Schwedler, Tjakko J. van Ham, Alessandro Esposito, Janet R. Kumita, Clemens F. Kaminski, Fiona T. S. Chan, Annemieke T. van der Goot, Christopher M. Dobson |
---|---|
Přispěvatelé: | University of Groningen, Molecular Neuroscience and Ageing Research (MOLAR) |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
FLIM
Amyloid Recombinant Fusion Proteins Protein aggregation 010402 general chemistry 01 natural sciences TOXICITY Article BETA PLAQUES 03 medical and health sciences chemistry.chemical_compound RED-BLOOD-CELLS synuclein PARKINSONS-DISEASE Bacterial Proteins In vivo protein folding Cell Line Tumor Fluorescence Resonance Energy Transfer Animals Humans Physical and Theoretical Chemistry FLUORESCENCE Caenorhabditis elegans STATE NMR-SPECTROSCOPY 030304 developmental biology Luminescent Proteins Alpha-synuclein 0303 health sciences POLYGLUTAMINE AGGREGATION Chemistry amyloid beta-peptides biosensors ALPHA-SYNUCLEIN AGGREGATION Atomic and Molecular Physics and Optics 0104 chemical sciences Kinetics Förster resonance energy transfer Biochemistry Microscopy Fluorescence MISFOLDING DISEASES Synuclein Biophysics Protein folding PROTEIN AGGREGATION |
Zdroj: | Chemphyschem, 12(3), 673-680. WILEY-V C H VERLAG GMBH |
ISSN: | 1439-4235 |
Popis: | Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Forster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for alpha-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated. |
Databáze: | OpenAIRE |
Externí odkaz: |