Anisotropic Navier Kirchhoff problems with convection and Laplacian dependence
Autor: | Vicenţiu D. Rădulescu, Calogero Vetro |
---|---|
Přispěvatelé: | Radulescu V.D., Vetro C. |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematical Methods in the Applied Sciences. 46:461-478 |
ISSN: | 1099-1476 0170-4214 |
DOI: | 10.1002/mma.8521 |
Popis: | We consider the Navier problem-Delta(2)(k,p)u(x)=f(x,u(x), del u(x), Delta u(x)) in Omega, u vertical bar(partial derivative Omega) =Delta u vertical bar(partial derivative Omega) = 0,driven by the sign-changing (degenerate) Kirchhoff type p(x)-biharmonic operator, and involving a (del u, Delta u)-dependent nonlinearity f. We prove the existence of solutions, in weak sense, defining an appropriate Nemitsky map for the nonlinearity. Then, the Brouwer fixed point theorem assessed for a Galerkin basis of the Banach space W-2,W-p(x)(Omega)boolean AND W-0(1,p(x))(Omega) leads to the existence result. The case of nondegenerate Kirchhoff type p(x)-biharmonic operator is also considered with respect to the theory of pseudo-monotone operators, and an asymptotic analysis is derived. |
Databáze: | OpenAIRE |
Externí odkaz: |