Repetitive model refactoring strategy for the design space exploration of intensive signal processing applications

Autor: Eric Lenormand, Calin Glitia, Michel Barreteau, Pierre Boulet
Přispěvatelé: Contributions of the Data parallelism to real time (DART), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria), Thales Research and Technology [Palaiseau], THALES [France]
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Journal of Systems Architecture
Journal of Systems Architecture, 2011, 57 (9), pp.815-829. ⟨10.1016/j.sysarc.2010.12.002⟩
ISSN: 1383-7621
DOI: 10.1016/j.sysarc.2010.12.002⟩
Popis: International audience; The efficient design of computation intensive multidimensional signal processing applications requires dealing with three kinds of constraints: those implied by the data dependencies, the non-functional requirements (real-time, power consumption) and resources availability of the execution platform. Modeling and Analysis of Real-time and Embedded systems (MARTE) UML profile through its repetitive structure modeling (RSM) package is well suited to model the inherent parallelism within these applications, a compact representation of parallel execution platforms and the distributive mapping of one on another. The execution of such a specification respects the whole set of constraints defined upon, while the quality of the scheduling is directly linked to the quality of the mapping of the multidimensional structures (data arrays or parallel loop nests) into time and space. We propose here a strategy to use a refactoring tool dedicated to this kind of application that allows to find good trade-offs in the usage of storage and computation resources and in parallelism (both task and data parallelism) exploitation. This strategy is illustrated on an industrial radar application.
Databáze: OpenAIRE