Quantum Neural Networks and Topological Quantum Field Theories
Autor: | Antonino Marcianò, Deen Chen, Filippo Fabrocini, Chris Fields, Enrico Greco, Niels Gresnigt, Krid Jinklub, Matteo Lulli, Kostas Terzidis, Emanuele Zappala |
---|---|
Přispěvatelé: | Marcianò, Antonino, Chen, Deen, Fabrocini, Filippo, Fields, Chri, Greco, Enrico, Gresnigt, Niel, Jinklub, Krid, Lulli, Matteo, Terzidis, Kosta, Zappala, Emanuele |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | Our work intends to show that: (1) Quantum Neural Networks (QNNs) can be mapped onto spin-networks, with the consequence that the level of analysis of their operation can be carried out on the side of Topological Quantum Field Theory (TQFT); (2) A number of Machine Learning (ML) key-concepts can be rephrased by using the terminology of TQFT. Our framework provides as well a working hypothesis for understanding the generalization behavior of DNNs, relating it to the topological features of the graph structures involved. (c) 2022 Elsevier Ltd. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |