Axiomatizations of Dutta-Ray’s Egalitarian Solution on the Domain of Convex Games
Autor: | Francesc Llerena, Peter Sudhölter, Pedro Calleja |
---|---|
Rok vydání: | 2020 |
Předmět: |
Economics and Econometrics
Monotonic function Rationality Consistency (knowledge bases) Convex TU game Domain (mathematical analysis) Equality 0502 economics and business Axiomes Egalitarianism Axiom 050205 econometrics Mathematics Stylized fact Axioms Funcions convexes Convex functions Applied Mathematics 05 social sciences Regular polygon Pareto principle Axiomatizations Core (game theory) Bounded function Igualtat Aggregate monotonicity 050206 economic theory Mathematical economics Dutta-Ray's egalitarian solution |
Zdroj: | Calleja, P, Llerena, F & Sudhölter, P 2021, ' Axiomatizations of Dutta-Ray's egalitarian solution on the domain of convex games ', Journal of Mathematical Economics, vol. 95, 102477 . https://doi.org/10.1016/j.jmateco.2021.102477 Dipòsit Digital de la UB Universidad de Barcelona |
ISSN: | 1556-5068 |
DOI: | 10.2139/ssrn.3577521 |
Popis: | We show that on the domain of convex games, Dutta-Ray’s egalitarian solution is characterized by core selection, aggregate monotonicity, and bounded richness, a new property requiring that the poorest players cannot be made richer within the core. Replacing “poorest” by “poorer” allows to eliminate aggregate monotonicity. Moreover, we show that the egalitarian solution is characterized by constrained welfare egalitarianism and either bilateral consistency a la Davis and Maschler or, together with individual rationality, by bilateral consistency a la Hart and Mas-Colell. |
Databáze: | OpenAIRE |
Externí odkaz: |