Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces
Autor: | Matteo Cozzi |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Applied Mathematics 010102 general mathematics Translation (geometry) Non local 01 natural sciences 010101 applied mathematics Sobolev space Mathematics - Analysis of PDEs Turn (geometry) FOS: Mathematics 0101 mathematics Nirenberg and Matthaei experiment 35R09 35R11 45K05 35B65 46E35 Analysis of PDEs (math.AP) Mathematics |
Zdroj: | Annali di Matematica Pura ed Applicata (1923 -). 196:555-578 |
ISSN: | 1618-1891 0373-3114 |
DOI: | 10.1007/s10231-016-0586-3 |
Popis: | We prove interior $H^{2s-\varepsilon}$ regularity for weak solutions of linear elliptic integro-differential equations close to the fractional $s$-Laplacian. The result is obtained via intermediate estimates in Nikol'skii spaces, which are in turn carried out by means of an appropriate modification of the classical translation method by Nirenberg. |
Databáze: | OpenAIRE |
Externí odkaz: |