Autor: |
Su, Linjia, Sun, Zhe, Qi, Fangzheng, Su, Huishan, Qian, Luomeng, Li, Jing, Zuo, Liang, Huang, Jinhai, Yu, Zhilin, Li, Jinping, Chen, Zhinan, Zhang, Sihe |
Rok vydání: |
2022 |
DOI: |
10.6084/m9.figshare.20347564 |
Popis: |
Additional file 2: Fig. S1. Granularity and electric potential analysis of Tat/pGL3 and Tat/pGL3-Ca2+ particles. Fig. S2. High-concentration, long-term treatment with Tat/pGL3-Ca2+ nanoparticles triggers necrotic apoptosis. Fig. S3. Stability characteristics of Tat/pDNA-Ca2+ nanoparticles in culture media or mice serum. Fig. S4. Unpackaging of Tat/pDNA complexes or Tat/pDNA-Ca2+ nanoparticles by heparin displacement of pDNA. Fig. S5. Tat/pGL3-Ca2+ nanoparticles mainly use macropinocytosis for uptake. Fig. S6. EIPA treatment inhibited the uptake and expression of Tat/pGL3-Ca2+ nanoparticles. Fig. S7. Tat/pDNA-Ca2+ nanoparticles do not interfere with sub-phase distribution of cell-cycle. Fig. S8. Construction of recombinant lentiviral plasmids for GRP75 over-expression (A) and knock-down (B). Fig. S9. Highly expression or phosphorylated activation of GRP75 promotes centrosome duplication in Cos7 cells, and GRP75 mainly localizes in duplicated centrosome. Fig. S10. Highly expression or phosphorylated activation of GRP75 promotes itself and Mps1 co-translocating to centrosome in Cos7 cells. Fig. S11. GRP75 and Mps1 co-localized with r-tubulin only in duplicating centrosome. Fig. S12. Quantification of apoptotic cells in ovarian tumor with different treatments. Fig. S13. H&E staining of hearts, livers, spleens, lungs, kidneys and tumor tissues from mice with different treatments. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|