Bisimulation Equivalence of First-Order Grammars is ACKERMANN-Complete

Autor: Petr Jancar, Sylvain Schmitz
Přispěvatelé: Department of Computer Science [Univ Palacký], Faculty of Science [Univ Palacký], Palacky University Olomouc-Palacky University Olomouc, Laboratoire Spécification et Vérification [Cachan] (LSV), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ANR-17-CE40-0028,BRAVAS,IDEAL-BASED ALGORITHMS FOR VASSES AND WELL-STRUCTURED SYSTEMS(2017)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: LICS 2019, 34th Annual ACM/IEEE Symposium on Logic in Computer Science
LICS 2019, 34th Annual ACM/IEEE Symposium on Logic in Computer Science, Jun 2019, Vancouver, Canada. pp.1--12, ⟨10.1109/LICS.2019.8785848⟩
LICS
DOI: 10.1109/LICS.2019.8785848⟩
Popis: International audience; Checking whether two pushdown automata with restricted silent actions are weakly bisimilar was shown decidable by Sénizergues (1998, 2005). We provide the first known complexity upper bound for this famous problem, in the equivalent setting of first-order grammars. This ACKERMANN upper bound is optimal, and we also show that strong bisimilarity is primitive-recursive when the number of states of the automata is fixed.
Databáze: OpenAIRE