The M-matrix group inverse problem for distance-biregular graphs

Autor: Aida Abiad, Ángeles Carmona, Andrés M. Encinas, María José Jiménez
Přispěvatelé: Mathematics, Digital Mathematics, EAISI Foundational, Combinatorial Optimization 1, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. OMGRAPH - Optimisation Methods on Graphs
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Computational and Applied Mathematics, 42(4):158. Springer
ISSN: 2238-3603
DOI: 10.1007/s40314-023-02301-1
Popis: In this work, we obtain the group inverse of the combinatorial Laplacian matrix of distance-biregular graphs. This expression can be obtained trough the so-called equilibrium measures for sets obtained by deleting a vertex. Moreover, we show that the two equilibrium arrays characterizing distance-biregular graphs can be expressed in terms of the mentioned equilibrium measures. As a consequence of the minimum principle, we provide a characterization of when the group inverse of the combinatorial Laplacian matrix of a distance-biregular graph is an M-matrix.
Databáze: OpenAIRE