Evaluation of the Antimicrobial Efficacy of N-Acetyl-L-Cysteine, Rhamnolipids, and Usnic Acid—Novel Approaches to Fight Food-Borne Pathogens
Autor: | Sabina Purkrtova, James N. Wilking, Ondrej Chlumsky, Kristen A. Brileya, Heidi J. Smith, Jitka Viktorova, Albert E. Parker, Katerina Demnerova, Hana Michova, Pavel Ulbrich |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
bacterial growth
Bacterial growth medicine.disease_cause biofilm Foodborne Diseases chemistry.chemical_compound minimum inhibitory concentrations food-borne pathogens Anti-Infective Agents N-acetyl-L-cysteine Biology (General) Spectroscopy biology Chemistry Usnic acid Salmonella enterica General Medicine Antimicrobial acute cytotoxicity Computer Science Applications Anti-Bacterial Agents Staphylococcus aureus QH301-705.5 Food Contamination Microbial Sensitivity Tests Article Catalysis Microbiology Cell Line Inorganic Chemistry Listeria monocytogenes medicine Escherichia coli Humans Physical and Theoretical Chemistry rhamnolipids antimicrobial efficacy QD1-999 Molecular Biology Benzofurans Organic Chemistry usnic acid Biofilm biology.organism_classification Acetylcysteine Biofilms Food Microbiology Glycolipids Bacteria |
Zdroj: | International Journal of Molecular Sciences Volume 22 Issue 21 International Journal of Molecular Sciences, Vol 22, Iss 11307, p 11307 (2021) |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms222111307 |
Popis: | In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-l-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |