Systems Neuroscience of Mathematical Cognition and Learning

Autor: Teresa Iuculano, Vinod Menon, Aarthi Padmanabhan
Přispěvatelé: Université Paris Descartes - Faculté des Sciences humaines et sociales - Sorbonne (UPD5 SHS), Université Paris Descartes - Paris 5 (UPD5), Stanford School of Medicine [Stanford], Stanford Medicine, Stanford University-Stanford University, Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Heterogeneity of Function in Numerical Cognition
Heterogeneity of Function in Numerical Cognition, Elsevier, pp.287-336, 2018, ⟨10.1016/B978-0-12-811529-9.00015-7⟩
DOI: 10.1016/B978-0-12-811529-9.00015-7⟩
Popis: International audience; In this chapter, we take a systems neuroscience approach and review neurocognitive systems involved in mathematical cognition and learning, highlighting functional brain circuits that support these processes and sources of heterogeneity that influence their typical or atypical development. We first examine the core neural building blocks of numerical cognition anchored in posterior parietal and ventral temporal–occipital cortices and then describe how working memory, language, declarative memory, and cognitive control systems facilitate numerical problem-solving and help scaffold mathematical learning and skill acquisition. We then highlight the contribution of interactive functional circuits to mathematical cognition and learning at different stages of development and skill levels. We suggest that mathematical knowledge serves as a model domain for investigating the ontogenesis of human cognitive and problem-solving skills, and that a systems neuroscience framework can shed light on why some individuals excel and others struggle.
Databáze: OpenAIRE