Systems Neuroscience of Mathematical Cognition and Learning
Autor: | Teresa Iuculano, Vinod Menon, Aarthi Padmanabhan |
---|---|
Přispěvatelé: | Université Paris Descartes - Faculté des Sciences humaines et sociales - Sorbonne (UPD5 SHS), Université Paris Descartes - Paris 5 (UPD5), Stanford School of Medicine [Stanford], Stanford Medicine, Stanford University-Stanford University, Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Computer science
Building blocks Numerical cognition Neurocognitive systems 050105 experimental psychology Dreyfus model of skill acquisition [SHS]Humanities and Social Sciences 03 medical and health sciences 0302 clinical medicine Associative learning Cognitive development 0501 psychology and cognitive sciences Symbolic mapping Systems neuroscience Cognitive science Working memory 05 social sciences Mathematical learning Cognition Cognitive control Heterogeneity Neurocognitive 030217 neurology & neurosurgery Functional brain circuits |
Zdroj: | Heterogeneity of Function in Numerical Cognition Heterogeneity of Function in Numerical Cognition, Elsevier, pp.287-336, 2018, ⟨10.1016/B978-0-12-811529-9.00015-7⟩ |
DOI: | 10.1016/B978-0-12-811529-9.00015-7⟩ |
Popis: | International audience; In this chapter, we take a systems neuroscience approach and review neurocognitive systems involved in mathematical cognition and learning, highlighting functional brain circuits that support these processes and sources of heterogeneity that influence their typical or atypical development. We first examine the core neural building blocks of numerical cognition anchored in posterior parietal and ventral temporal–occipital cortices and then describe how working memory, language, declarative memory, and cognitive control systems facilitate numerical problem-solving and help scaffold mathematical learning and skill acquisition. We then highlight the contribution of interactive functional circuits to mathematical cognition and learning at different stages of development and skill levels. We suggest that mathematical knowledge serves as a model domain for investigating the ontogenesis of human cognitive and problem-solving skills, and that a systems neuroscience framework can shed light on why some individuals excel and others struggle. |
Databáze: | OpenAIRE |
Externí odkaz: |