Solvent Extraction and Fluorescence Spectroscopic Investigation of the Selective Am(III) Complexation with TS-BTPhen

Autor: Petra J. Panak, Andreas Wilden, Frank W. Lewis, Peter Kaufholz, Andreas Geist, Laurence M. Harwood, Fabian Sadowski, Dirk Bosbach, Christoph Wagner, Giuseppe Modolo
Rok vydání: 2016
Předmět:
Zdroj: Solvent extraction and ion exchange 34(2), 126-140 (2016). doi:10.1080/07366299.2016.1151308
ISSN: 1532-2262
0736-6299
Popis: An americium(III) selective separation procedure was developed based on the coextraction of trivalent actinides (An(III)) and lanthanides (Ln(III)) by TODGA (N,N,N′,N′-tetraoctyl-diglycolamide), followed by Am(III) selective stripping using the hydrophilic complexing agent TS-BTPhen (3,3′,3ʺ,3ʺ′-[3-(1,10-phenanthroline-2,9-diyl)-1,2,4-triazine-5,5,6,6-tetrayl]tetrabenzenesulfonic acid). Distribution ratios were found at an acidity of 0.65 mol L−1 nitric acid that allowed for the separation of Am(III) from Cm(III) (DCm > 1; DAm < 1), giving a separation factor between curium and americium of SFCm/Am = 3.6 within the stripping step. Furthermore, Am(III) was readily separated from the lanthanides with the lowest selectivity for the Ln(III)/Am(III) separation being lanthanum with a separation factor of SFLa/Am = 20. The influence of the TS-BTPhen concentration on Am(III) distribution ratios was studied, giving a slope (logD vs. log[TS-BTPhen]) of approximately −1 for the stripping of Am(III) with TS-BTPhen from the TODGA-based organic phase. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements of curium(III) were used to analyze the speciation of Cm(III)-TS-BTPhen complexes. Both 1:1 and 1:2 complexes were identified in single-phase experiments. The formation of the 1:1 complex was suppressed in 0.5 mol L−1 nitric acid but it was significantly present in HClO4 at pH 3. Conditional stability constants of the complex species were calculated from the TRLFS experiments.
Databáze: OpenAIRE