Spaces of approximative maps, II
Autor: | V. F. Laguna, José Manuel Rodríguez Sanjurjo |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona |
Popis: | The authors study the space $A\sp*(X,Y)$ of all approximative maps f$=\{f\sb k: X\to Y\}$ between compact subsets X, Y of the Hilbert cube. The topology of this space is given by the pseudometric $d\sp*(\underline f,\underline g)=\inf \{\sup \{dist(f\sb k,g\sb k)\vert$ $k\ge k'\}\vert$ $k'=1,2,...\}$. They show that approximative maps from the same path component of $A\sp*(X,Y)$ induce the same shape morphism, but the converse implication does not hold. They also consider several classes of approximative maps which form closed subsets of $A\sp*(X,Y)$. |
Databáze: | OpenAIRE |
Externí odkaz: |