The additive free microwave hydrolysis of lignocellulosic biomass for fermentation to high value products

Autor: Fabio Santomauro, Tanakorn Chantasuban, Vitaliy L. Budarin, Fraeya Whiffin, Christopher J. Chuck, Roderick J. Scott, Daniel A. Henk, Jiajun Fan, James H. Clark, Deborah Gore-Lloyd, Felix Abeln
Rok vydání: 2018
Předmět:
Zdroj: Fan, J, Santomauro, F, Budarin, V L, Whiffin, F, Abeln, F, Chantasuban, T, Gore-Lloyd, D, Henk, D, Scott, R J, Clark, J & Chuck, C J 2018, ' The additive free microwave hydrolysis of lignocellulosic biomass for fermentation to high value products ', Journal of Cleaner Production, vol. 198, pp. 776-784 . https://doi.org/10.1016/j.jclepro.2018.07.088
Journal of Cleaner Production
ISSN: 0959-6526
DOI: 10.1016/j.jclepro.2018.07.088
Popis: Current biorefineries are predominantly based around single feedstock sources, extensively hydrolysed using multiple unit operations. The hydrolysate is generally converted to a single product by one of a few well-characterised organisms. Here, we report on a new approach to the biorefinery, combining a rapid, microwave heated, one-step depolymerisation process, with a yeast, Metschnikowia pulcherrima which is able to metabolise an array of oligo- and monosaccharides. During the investigation it was found that the microwave hydrolysis process was able to solubilize upto 50% wheat straw biomass by weight, mainly as oligosaccharides though also containing mixtures of pentose, hexose and anhydro-sugars with concentrations of up to 2 g L-1. However, a fine balance between elevated monosaccharide yields and the production of inhibitive compounds had to be struck with optimal microwave hydrolytic conditions found to be 190 °C. Further testing utilizing several different types of lignocellulosic biomass demonstrated it was possible to attain ~65% carbon efficiency in the conversion of Laminaria saccharina to hydrolysis products. The system was scaled to 600 mL using DDGS successfully solubilizing 66% of the feedstock, producing 33 g L-1 hydrolysate. M. pulcherrima grew well on this hydrolysate in a controlled stirred tank bioreactor (2L), yielding 8.38 g L-1 yeast biomass, a yeast biomass coefficient of 0.25. This presents an exciting, feedstock agnostic, pathway to the energy efficient production of a wide variety of commercially valuable chemical products without the need for extensive pre and post processing technologies.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665992
Databáze: OpenAIRE