Horizontal Gauss curvature flow of graphs in Carnot groups
Autor: | Erin Haller Martin |
---|---|
Rok vydání: | 2011 |
Předmět: |
General Mathematics
010102 general mathematics Degenerate energy levels Mathematical analysis Mathematics::Analysis of PDEs Carnot group 01 natural sciences Parabolic partial differential equation Graph 010101 applied mathematics Viscosity symbols.namesake Mathematics - Analysis of PDEs Flow (mathematics) FOS: Mathematics symbols Gaussian curvature 0101 mathematics Carnot cycle Analysis of PDEs (math.AP) Mathematics |
Zdroj: | Indiana University Mathematics Journal. 60:1267-1302 |
ISSN: | 0022-2518 |
DOI: | 10.1512/iumj.2011.60.4411 |
Popis: | We show the existence of continuous viscosity solutions to the equation describing the flow of a graph in the Carnot group G x R according to its horizontal Gauss curvature. In doing so, we prove a comparison principle for degenerate parabolic equations of the form u_t + F(D_0u, (D_0^2u)^*) = 0 for u defined on G. |
Databáze: | OpenAIRE |
Externí odkaz: |