Claisened Hexafluoro Inhibits Metastatic Spreading of Amoeboid Melanoma Cells

Autor: Elisa Pardella, Silvia Peppicelli, Paolo Cirri, Laura Pietrovito, Lei Zhu, Maria Letizia Taddei, Matteo Parri, Giovanni Raugei, Eugenio Torre, Erica Pranzini, Gennaro Bruno, Maura Calvani, Lily Yang, Angela Leo, Maiko Sasaki, Paola Chiarugi, Jack L. Arbiser
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Cancers
Cancers, Vol 13, Iss 3551, p 3551 (2021)
Volume 13
Issue 14
ISSN: 2072-6694
Popis: Simple Summary Metastatic melanoma is one of the most aggressive and lethal malignancies with a poor prognosis. Several data underline the crucial role of amoeboid motility in the dissemination of metastatic melanoma cells. Thus, targeting this phenomenon could represent a promising strategy to prevent metastasis formation and improve metastatic melanoma patient’s survival. With this aim, we investigated the effect of Claisened Hexafluoro, a chemical analogue of Honokiol, on human metastatic melanoma cells. We demonstrated that Claisened Hexafluoro, by deregulating the mitochondrial activity, inhibits amoeboid motility and impairs many steps of the dissemination process, finally decreasing the in vivo metastatic spreading. Collectively, these data suggest possible future applications of Claisened Hexafluoro for the treatment of metastatic melanoma. Abstract Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.
Databáze: OpenAIRE