Diagonalizing triangular matrices via orthogonal Pierce decompositions
Autor: | Roland Puystjens, Robert E. Hartwig, Pedro Patrício |
---|---|
Přispěvatelé: | Universidade do Minho |
Rok vydání: | 2005 |
Předmět: |
Ring (mathematics)
Numerical Analysis Science & Technology Algebra and Number Theory 010102 general mathematics Diagonal Triangular matrix 010103 numerical & computational mathematics 01 natural sciences Triangular matrices Von Neumann regularity Matrix decomposition Combinatorics Matrix (mathematics) Orthogonal polynomials Diagonal matrix Neumann boundary condition Diagonalization Discrete Mathematics and Combinatorics Rings Geometry and Topology 0101 mathematics Mathematics |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP |
ISSN: | 0024-3795 |
DOI: | 10.1016/j.laa.2004.10.002 |
Popis: | A class of sufficient conditions is given to ensure that the sum a+b in a ring R, is equivalent to a sum x + y, which is an orthogonal Pierce decomposition. This is then used to show that a lower triangular matrix, with a regular diagonal is equivalent to its diagonal iff the matrix admits a lower triangular von Neumann inverse. Fundação para a Ciência e a Tecnologia (FCT) – Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI). |
Databáze: | OpenAIRE |
Externí odkaz: |