Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets
Autor: | Laurent Legrand, Rim Ben Aich, Amal Ghribi, K. Boujdaria, Christophe Testelin, Maria Chamarro, Thierry Barisien |
---|---|
Přispěvatelé: | Université de Carthage - University of Carthage, Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Photonique et cohérence de spin (INSP-E12), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Nanostructure
Materials science General Chemical Engineering Exciton exciton energy perovskites Halide 02 engineering and technology Dielectric exciton fine structure 01 natural sciences 7. Clean energy Article Band offset Tetragonal crystal system Condensed Matter::Materials Science 0103 physical sciences General Materials Science 010306 general physics QD1-999 Perovskite (structure) [PHYS]Physics [physics] Condensed matter physics nanoplatelets electronic and dielectric confinements 021001 nanoscience & nanotechnology Chemistry Orthorhombic crystal system 0210 nano-technology |
Zdroj: | Nanomaterials Nanomaterials, MDPI, 2021, 11 (11), pp.3054. ⟨10.3390/nano11113054⟩ Volume 11 Issue 11 Nanomaterials, Vol 11, Iss 3054, p 3054 (2021) |
DOI: | 10.3390/nano11113054⟩ |
Popis: | International audience; Owing to their flexible chemical synthesis and the ability to shape nanostructures, lead halide perovskites have emerged as high potential materials for optoelectronic devices. Here, we investigate the excitonic band edge states and their energies levels in colloidal inorganic lead halide nanoplatelets, particularly the influence of dielectric effects, in a thin quasi-2D system. We use a model including band offset and dielectric confinements in the presence of Coulomb interaction. Short- and long-range contributions, modified by dielectric effects, are also derived, leading to a full modelization of the exciton fine structure, in cubic, tetragonal and orthorhombic phases. The fine splitting structure, including dark and bright excitonic states, is discussed and compared to recent experimental results, showing the importance of both confinement and dielectric contributions |
Databáze: | OpenAIRE |
Externí odkaz: |