A Chemical Switch System to Modulate Chimeric Antigen Receptor T Cell Activity through Proteolysis-Targeting Chimaera Technology

Autor: Yeongrin Kim, Jong Yeon Hwang, Hye Gwang Jeong, Chi Hoon Park, Sang Un Choi, So Myoung Lee, Chung Hyo Kang
Rok vydání: 2020
Předmět:
Zdroj: ACS synthetic biology. 9(5)
ISSN: 2161-5063
Popis: Despite the excellent efficacy of chimeric antigen receptor (CAR T) cell therapy, concerns about its safety have been constantly raised. The side effects of CAR T cells result from an aberrantly upregulation of CAR T cell activity. Therefore, it is crucial to control the CAR T cell activity whenever the patient is at risk. For this purpose, the iCas9 system, which induces apoptosis in CAR T cell through caspase-9 dimerization by compound, has been invented and is currently going under clinical trial. However, the iCas9 system is irreversible, as the entire CAR T cell population is removed from the patient. Thus, CAR T cells, which are very expensive, should be reinfused to the patients after they recovered from the side-effect. Here, we propose a new CAR T cell safety strategy, which targets CAR "protein", not CAR "T cell". In this system, the CAR construct is modified to bear a bromodomain (BD). The addition of a BD in the CAR protein did not interfere with the original CAR functions, such as cytokine secretion and target cell lysis. Our data showed that the use of a proteolysis-targeting chimaera (PROTAC) compound against BD successfully degraded the BD-containing CAR protein. Moreover, the CAR expression is recovered when the PROTAC compound is removed from the cell, demonstrating that our system is reversible. In a target cell lysis assay, the PROTAC compound successfully suppressed the lytic activity of CAR T cells by degrading the CAR protein. In conclusion, we developed a new safety system in which CAR T cells can be "reversibly" controlled by a compound.
Databáze: OpenAIRE