Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems

Autor: Dung Do Vu, Iulian Vlad Serban, Ekaterina Kochmar, Robert Belfer, Varun Gupta, Joelle Pineau
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Kochmar, E, Vu, D D, Belfer, R, Gupta, V, Serban, I V & Pineau, J 2021, ' Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems ', International Journal of Artificial Intelligence in Education . https://doi.org/10.1007/s40593-021-00267-x
DOI: 10.1007/s40593-021-00267-x
Popis: Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in , a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.
Databáze: OpenAIRE