Social Stress Alters Expression of Large Conductance Calcium-Activated Potassium Channel Subunits in Mouse Adrenal Medulla and Pituitary Glands
Autor: | D. P. McCobb, S. Nagaraj, Mary Lou Zeeman, O. Chatterjee, N. Suda, P. S. Chan, S. M. Finckbeiner, J. J. Hall, L. A. Taylor, S. Ahmed, Jonathan T. King |
---|---|
Rok vydání: | 2009 |
Předmět: |
Dominance-Subordination
Male Pituitary gland medicine.medical_specialty BK channel Endocrinology Diabetes and Metabolism Mice Inbred Strains Biology Models Biological Mice Cellular and Molecular Neuroscience chemistry.chemical_compound Endocrinology Anterior pituitary Corticosterone Internal medicine medicine Animals Large-Conductance Calcium-Activated Potassium Channels RNA Messenger Neuroendocrine cell Endocrine and Autonomic Systems Calcium-activated potassium channel Protein Subunits medicine.anatomical_structure Gene Expression Regulation chemistry Adrenal Medulla Pituitary Gland biology.protein Female Adrenal medulla Social Adjustment Stress Psychological Endocrine gland |
Zdroj: | Journal of Neuroendocrinology. 21:167-176 |
ISSN: | 1365-2826 0953-8194 |
DOI: | 10.1111/j.1365-2826.2009.01823.x |
Popis: | Large conductance calcium-activated potassium (BK) channels are very prominently expressed in adrenal chromaffin and many anterior pituitary cells, where they shape intrinsic excitability complexly. Stress- and sex-steroids regulate alternative splicing of Slo-alpha, the pore-forming subunit of BK channels, and chronic behavioural stress has been shown to alter Slo splicing in tree shrew adrenals. In the present study, we focus on mice, measuring the effects of chronic behavioural stress on total mRNA expression of the Slo-alpha gene, two key BK channel beta subunit genes (beta2 and beta4), and the 'STREX' splice variant of Slo-alpha. As a chronic stressor, males of the relatively aggressive SJL strain were housed with a different unfamiliar SJL male every 24 h for 19 days. This 'social-instability' paradigm stressed all individuals, as demonstrated by reduced weight gain and elevated corticosterone levels. Five quantitative reverse transcriptase-polymerase chain assays were performed in parallel, including beta-actin, each calibrated against a dilution series of its corresponding cDNA template. Stress-related changes in BK expression were larger in mice tested at 6 weeks than 9 weeks. In younger animals, Slo-alpha mRNA levels were elevated 44% and 116% in the adrenal medulla and pituitary, respectively, compared to individually-housed controls. beta2 and beta4 mRNAs were elevated 162% and 194% in the pituitary, but slightly reduced in the adrenals of stressed animals. In the pituitary, dominance scores of stressed animals correlated negatively with alpha and beta subunit expression, with more subordinate individuals exhibiting levels that were three- to four-fold higher than controls or dominant individuals. STREX variant representation was lower in the subordinate subset. Thus, the combination of subunits responding to stress differs markedly between adrenal and pituitary glands. These data suggest that early stress will differentially affect neuroendocrine cell excitability, and call for detailed analysis of functional consequences. |
Databáze: | OpenAIRE |
Externí odkaz: |