A Type Theory for Probabilistic and Bayesian Reasoning
Autor: | Adams, R., Jacobs, B., Uustalu, T. |
---|---|
Přispěvatelé: | Uustalu, T. |
Rok vydání: | 2018 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Logic in Computer Science 000 Computer science knowledge general works Probability (math.PR) G.3 F.4.1 F.3.1 Mathematics - Logic Logic in Computer Science (cs.LO) Computer Science::Logic in Computer Science Computer Science FOS: Mathematics Digital Security Logic (math.LO) GeneralLiterature_REFERENCE(e.g. dictionaries encyclopedias glossaries) Mathematics - Probability |
Zdroj: | Uustalu, T. (ed.), TYPES 2015: 21st International Conference on Types for Proofs and Programs, pp. 1:1-1:34 Uustalu, T. (ed.), TYPES 2015: 21st International Conference on Types for Proofs and Programs, 1:1-1:34. Schloss Dagstuhl : Dagstuhl Publishing STARTPAGE=1:1;ENDPAGE=1:34;ISSN=1868-8969;TITLE=Uustalu, T. (ed.), TYPES 2015: 21st International Conference on Types for Proofs and Programs |
ISSN: | 1868-8969 |
Popis: | This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum type theory, namely the bijective correspondence between predicates and side-effect free actions (called instrument, or assert, maps). The paper shows how suitable computation rules can be derived from this predicate-action correspondence, and uses these rules for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type theory may thus form the basis for a mechanisation of Bayesian inference. Comment: 38 pages |
Databáze: | OpenAIRE |
Externí odkaz: |