DECOMPOSITION OF LEVY TREES ALONG THEIR DIAMETER

Autor: Thomas Duquesne, Minmin Wang
Přispěvatelé: Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Ann. Inst. H. Poincaré Probab. Statist. 53, no. 2 (2017), 539-593
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2017, ⟨10.1214/15-AIHP725⟩
ISSN: 0246-0203
1778-7017
DOI: 10.1214/15-AIHP725⟩
Popis: We study the diameter of Lévy trees that are random compact metric spaces obtained as the scaling limits of Galton–Watson trees. Lévy trees have been introduced by Le Gall & Le Jan (Ann. Probab. 26 (1998) 213–252) and they generalise Aldous’ Continuum Random Tree (1991) that corresponds to the Brownian case. We first characterize the law of the diameter of Lévy trees and we prove that it is realized by a unique pair of points. We prove that the law of Lévy trees conditioned to have a fixed diameter $r\in (0,\infty)$ is obtained by glueing at their respective roots two independent size-biased Lévy trees conditioned to have height $r/2$ and then by uniformly re-rooting the resulting tree; we also describe by a Poisson point measure the law of the subtrees that are grafted on the diameter. As an application of this decomposition of Lévy trees according to their diameter, we characterize the joint law of the height and the diameter of stable Lévy trees conditioned by their total mass; we also provide asymptotic expansions of the law of the height and of the diameter of such normalised stable trees, which generalises the identity due to Szekeres (In Combinatorial Mathematics, X (Adelaide, 1982) (1983) 392–397 Springer) in the Brownian case.
Databáze: OpenAIRE