Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes

Autor: Omid Yousefzade, Jordi Puiggalí, Sofia Valenti, Roberto Macovez
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables, Universitat Politècnica de Catalunya. GCM - Grup de Caracterització de Materials
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: Transmission electron microscopy, temperature-modulated differential scanning calorimetry, and broadband dielectric spectroscopy were employed to characterize ternary nanocomposites consisting of carboxylated carbon nanotubes (CNT) dispersed in a blend of two immiscible polymers, poly(L,lactide) (PLLA) and thermoplastic polyurethane (TPU). The nanocomposite blends were obtained by melt-compounding of PLLA and TPU in the presence of 0.2 wt-% CNT, either in the presence or absence of a Joncryl® ADR chain extender for PLLA, leading to reactive and non-reactive melt mixed samples. In both cases, the binary PLLA/TPU blend is characterized by phase separation into submicron TPU droplets dispersed in the PLLA matrix, and displays two separate glass transition temperatures. The carbon nanotubes are present either inside the TPU phase (samples obtained without chain extender), or at their boundaries (reactive-melt mixed samples). The effect of the sub-micron confinement of the TPU component is to decrease the cooperativity length of the primary segmental relaxation of this polymer, which is accentuated by the presence of the CNT fillers. Depending on the type of sample, five or six distinct relaxations are observed by means of dielectric spectroscopy, which we are able to assign to different dielectric phenomena. Our dielectric data show that the CNT fillers do not contribute directly to the long-range charge transport in the nanocomposite blends, consistent with the nanocomposites morphology, but rather result in a shift of the Maxwell-Wagner-Sillars space-charge frequency associated with charge accumulation at the PLLA/TPU boundary. Such shift testifies to a selective conductivity enhancement of the TPU phase due to the filler.
Databáze: OpenAIRE