Periplaneta americana Oligosaccharides Exert Anti-Inflammatory Activity through Immunoregulation and Modulation of Gut Microbiota in Acute Colitis Mice Model
Autor: | Chuanfang Wu, Jinku Bao, Jie Deng, Kaimin Lu, Jing Zhou, Yangjun Li |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Periplaneta americana
medicine.drug_class Pharmaceutical Science Inflammation Pharmacology Gut flora medicine.disease_cause Anti-inflammatory Article Analytical Chemistry lcsh:QD241-441 03 medical and health sciences 0302 clinical medicine Immune system lcsh:Organic chemistry In vivo Drug Discovery medicine oligosaccharide oxidative stress Physical and Theoretical Chemistry Colitis Acute colitis 030304 developmental biology 0303 health sciences biology gut microbiota business.industry Organic Chemistry Pathogenic bacteria inflammatory bowel disorder biology.organism_classification medicine.disease Chemistry (miscellaneous) 030220 oncology & carcinogenesis Molecular Medicine medicine.symptom immune business |
Zdroj: | Molecules, Vol 26, Iss 1718, p 1718 (2021) Molecules Volume 26 Issue 6 |
ISSN: | 1420-3049 |
Popis: | The incidence and prevalence of inflammatory bowel disorders (IBD) are increasing around the world due to bacterial infection, abnormal immune response, etc. The conventional medicines for IBD treatment possess serious side effects. Periplaneta americana (P. americana), a traditional Chinese medicine, has been used to treat arthritis, fever, aches, inflammation, and other diseases. This study aimed to evaluate the anti-inflammatory effects of oligosaccharides from P. Americana (OPA) and its possible mechanisms in vivo. OPA were purified and biochemical characterization was analyzed by HPGPC, HPLC, FT-IR, and GC–MS. Acute colitis mice model was established, the acute toxicity and anti-inflammatory activity were tested in vivo. The results showed OPA with molecular mass of 1.0 kDa were composed of 83% glucose, 6% galactose, 11% xylose, and the backbone was (1→4)-Glcp. OPA had potent antioxidant activities in vitro and significantly alleviated the clinical symptoms of colitis, relieved colon damage without toxic side effects in vivo. OPA exhibited anti-inflammatory activity by regulating Th1/Th2, reducing oxidative stress, preserving intestinal barrier integrity, and inhibiting TLR4/MAPK/NF-κB pathway. Moreover, OPA protected gut by increasing microbial diversity and beneficial bacteria, and reducing pathogenic bacteria in feces. OPA might be the candidate of complementary and alternative medicines of IBD with low-cost and high safety. |
Databáze: | OpenAIRE |
Externí odkaz: |