Calculabilité de la cohomologie étale modulo $\ell$

Autor: David Madore, Fabrice Orgogozo
Přispěvatelé: Mathématiques discrètes, Codage et Cryptographie (MC2), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Informatique et Réseaux (INFRES), Télécom ParisTech, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: francouzština
Rok vydání: 2015
Předmět:
Pure mathematics
profinite group
Étale cohomology
010103 numerical & computational mathematics
effective algebraic geometry
12Y05
01 natural sciences
18G30
champ algébrique
Mathematics - Algebraic Geometry
spectral sequence
12G05
Mathematics
14F20
55T05
simplicial scheme
Eilenberg–MacLane space
16. Peace & justice
cohomological descent
03D99
étale cohomology
Spectral sequence
schéma simplicial
espace d'Eilenberg–MacLane
voisinage d'Artin
Stack (mathematics)
20E18
Galois cohomology
14F35
descente cohomologique
Gerbe
Artin's neighborhood
suite spectrale
groupe profini
calculabilité
0101 mathematics
13P10
cohomologie étale
géométrie algébrique effective
computability
Algebra and Number Theory
Profinite group
010102 general mathematics
gerbe
stack
14A20
cohomologie galoisienne
55P20
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Zdroj: Algebra & Number Theory
Algebra & Number Theory, Mathematical Sciences Publishers 2015, 9 (7), pp.1647-1739. ⟨10.2140/ant.2015.9.1647⟩
Algebra & Number Theory, Mathematical Sciences Publishers 2015, 9 (7), pp.1647-1739
Algebra Number Theory 9, no. 7 (2015), 1647-1739
ISSN: 1937-0652
DOI: 10.2140/ant.2015.9.1647⟩
Popis: Let $X$ be an algebraic scheme over an algebraically closed field and $\ell$ a prime number invertible on $X$. According to classical results (due essentially to A. Grothendieck, M. Artin and P. Deligne), the \'etale cohomology groups $\mathrm{H}^i(X,\mathbb{Z}/\ell\mathbb{Z})$ are finite-dimensional. Using an $\ell$-adic variant of M. Artin's good neighborhoods and elementary results on the cohomology of pro-$\ell$ groups, we express the cohomology of $X$ as a well controlled colimit of that of toposes constructed on $BG$ where the $G$ are computable finite $\ell$-groups. From this, we deduce that the Betti numbers modulo $\ell$ of $X$ are algorithmically computable (in the sense of Church-Turing). The proof of this fact, along with certain related results, occupies the first part of this paper. This relies on the tools collected in the second part, which deals with computational algebraic geometry. Finally, in the third part, we present a "universal" formalism for computation on the elements of a field.
Comment: In French. v2 has been considerably reworked and expanded. v3 incorporates slight corrections and simplifications and a few additions (notably: computability of the morphism from hyper\v{c}ech cohomology, graded algebra structure, and a worked out example); submitted for publication
Databáze: OpenAIRE