Impact of kinetic and potential self-interactions on scalar dark matter

Autor: Philippe Brax, Patrick Valageas, Jose A. R. Cembranos
Přispěvatelé: Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
cosmological model
nonpolynomial
01 natural sciences
General Relativity and Quantum Cosmology
law.invention
Gravitation
pressure
halo: density
law
dark matter: scalar
Conservation of mass
Physics
virial theorem
interaction: scalar
velocity: acoustic
Cosmology
finite size
Quantum electrodynamics
symbols
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Vector field
dark matter: fuzzy
k-essence
Scalar field
soliton
Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Dark matter
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
Astrophysics::Cosmology and Extragalactic Astrophysics
dark matter: density
approximation: fluid
nonrelativistic
symbols.namesake
0103 physical sciences
conservation law
010306 general physics
halo: mass
perturbation theory
010308 nuclear & particles physics
Scalar (physics)
Física
stability
Euler equations
field theory: scalar
13. Climate action
gravitation
density dependence
model: scalar
galaxy
Hydrostatic equilibrium
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Zdroj: Phys.Rev.D
Phys.Rev.D, 2019, 100 (2), pp.023526. ⟨10.1103/PhysRevD.100.023526⟩
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
Physical Review D
E-Prints Complutense. Archivo Institucional de la UCM
instname
Physical Review D, American Physical Society, 2019, 100 (2), pp.023526. ⟨10.1103/PhysRevD.100.023526⟩
ISSN: 1550-7998
1550-2368
DOI: 10.1103/PhysRevD.100.023526⟩
Popis: We consider models of scalar dark matter with a generic interaction potential and non-canonical kinetic terms of the K-essence type that are subleading with respect to the canonical term. We analyze the low-energy regime and derive, in the nonrelativistic limit, the effective equations of motions. In the fluid approximation they reduce to the conservation of matter and to the Euler equation for the velocity field. We focus on the case where the scalar field mass $10^{-21} \ll m \lesssim 10^{-4} \, {\rm eV}$ is much larger than for fuzzy dark matter, so that the quantum pressure is negligible on cosmological and galactic scales, while the self-interaction potential and non-canonical kinetic terms generate a significant repulsive pressure. At the level of cosmological perturbations, this provides a dark-matter density-dependent speed of sound. At the nonlinear level, the hydrostatic equilibrium obtained by balancing the gravitational and scalar interactions imply that virialized structures have a solitonic core of finite size depending on the speed of sound of the dark matter fluid. For the most relevant potential in $\lambda_4 \phi^4/4$ or K-essence with a $(\partial \phi)^4$ interaction, the size of such stable cores cannot exceed 60 kpc. Structures with a density contrast larger than $10^6$ can be accommodated with a speed of sound $c_s\lesssim 10^{-6}$. We also consider the case of a cosine self-interaction, as an example of bounded nonpolynomial self-interaction. This gives similar results in low-mass and low-density halos whereas solitonic cores are shown to be absent in massive halos.
Comment: 25 pages
Databáze: OpenAIRE