Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors
Autor: | Carsten F. Dormann, Dale G. Paton, Robin A. Benz, Simone Ciuti, Marco Musiani, Henrik Thurfjell, Mark S. Boyce |
---|---|
Rok vydání: | 2016 |
Předmět: |
0106 biological sciences
Animal Types Ecology (disciplines) Wildlife lcsh:Medicine Transportation Wildlife corridor Theoretical ecology Civil Engineering 010603 evolutionary biology 01 natural sciences Behavioral Ecology Theoretical Ecology Animals Spatial and Landscape Ecology lcsh:Science Conservation Science Behavior Multidisciplinary Habitat fragmentation Animal Behavior Ecology 010604 marine biology & hydrobiology lcsh:R Ecology and Environmental Sciences Organisms Biology and Life Sciences 15. Life on land Transportation Infrastructure Roads Habitats Geography Habitat Engineering and Technology Biological dispersal lcsh:Q Animal Migration Zoology Research Article Landscape connectivity |
Zdroj: | PLoS ONE PLoS ONE, Vol 11, Iss 9, p e0162989 (2016) |
ISSN: | 1932-6203 |
DOI: | 10.1371/journal.pone.0162989 |
Popis: | Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas' colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers' groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways' segments impeding elk connectivity. |
Databáze: | OpenAIRE |
Externí odkaz: |