Многопараметрическая идентификация теплофизических характеристик путем решения внутренней обратной задачи теплопроводности

Autor: Yurii M. Matsevytyi, Valerii V. Hanchyn
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Physics
tikhonov’s regularization method
inverse heat conduction problem
regularization parameter
УДК 536.24
Mechanics
Tikhonov’s regularization method
stabilization functional
identification
approximation
Schoenberg's cubic splines
обернена задача теплопровідності
метод регуляризації А. М. Тихонова
стабілізуючий функціонал
параметр регуляризації
ідентифікація
апроксимація
кубічні сплайни Шьонберга
Inverse heat conduction
Identification (information)
обратная задача теплопроводности
метод регуляризации А. Н. Тихонова
стабилизирующий функционал
параметр регуляризации
идентификация
аппроксимация
кубические сплайны Шёнберга
TJ1-1570
UDC 536.24
Mechanical engineering and machinery
schoenberg's cubic splines
Zdroj: Проблемы машиностроения; Том 23, № 2 (2020); 14-20
Проблеми машинобудування; Том 23, № 2 (2020); 14-20
Journal of Mechanical Engineering; Том 23, № 2 (2020); 14-20
Journal of Mechanical Engineering, Vol 23, Iss 2, Pp 14-20 (2020)
ISSN: 0131-2928
2411-0779
Popis: Розроблено підходи до ідентифікації теплофізичних характеристик з використанням методів розв'язання обернених задач теплопровідності і методу регуляризації А. М. Тихонова. За результатами проведеного експерименту визначаються залежні від температури коефіцієнт теплопровідності, теплоємність, внутрішні джерела теплоти. При цьому теплофізичні характеристики апроксимуються кубічними сплайнами Шьонберга, внаслідок чого їх ідентифікація зводиться до визначення невідомих коефіцієнтів в апроксимаційних залежностях. Отже, температура в тілі буде залежати від цих коефіцієнтів і її можна буде зобразити, використовуючи два члени ряду Тейлора як лінійну комбінацію її частинних похідних з невідомих коефіцієнтів, помножених на приріст цих коефіцієнтів. Підставляючи цей вираз в функціонал Тихонова і використовуючи властивість мінімуму квадратичного функціонала, можна звести розв’язок задачі до розв’язання системи лінійних рівнянь щодо збільшень невідомих коефіцієнтів. Вибравши для початкового наближення певний параметр регуляризації і деякі функції, можна реалізувати ітераційний процес, в якому вектор невідомих коефіцієнтів для поточної ітерації буде дорівнювати сумі вектора коефіцієнтів з попередньої ітерації і вектора приростів цих коефіцієнтів внаслідок розв’язання системи лінійних рівнянь. Такий ітераційний процес з ідентифікації теплофізичних характеристик для кожного параметра регуляризації дає можливість визначити середньоквадратичний відхил між одержуваною температурою і температурою, яку виміряли внаслідок проведеного експерименту. Залишається підібрати параметр регуляризації таким чином, щоб цей відхил був в межах середньоквадратичної похибки вимірювань. Такий пошук, наприклад, ідентичний алгоритмам пошуку кореня нелінійного рівняння. Під час перевірки ефективності використання запропонованого методу було розв’язано низку тестових задач для тіл з відомими теплофізичними характеристиками. Проведено аналіз впливу випадкових похибок вимірювань на похибку ідентифікованих теплофізичних характеристик досліджуваного тіла.
Approaches to the identification of thermophysical characteristics, using methods for solving inverse heat conduction problems and A. N. Tikhonov’s regularization method, are developed. According to the results of the experiment, temperature-dependent coefficients of heat conductivity, heat capacity, and internal heat sources are determined. In this case, the thermophysical characteristics are approximated by Schoenberg’s cubic splines, as a result of which their identification reduces to determining unknown coefficients in the approximated dependencies. Therefore, the temperature in the body will depend on these coefficients, and it can be represented using two members of the Taylor series as a linear combination of its partial derivatives with respect to the unknown coefficients, multiplied by the increments of these coefficients. Substituting this expression into the Tikhonov functional and using the minimum property of the quadratic functional, we can reduce the solution of the problem to the solution of a system of linear equations with respect to the increments of unknown coefficients. By choosing a certain regularization parameter and some functions as an initial approximation, we can implement an iterative process in which the vector of unknown coefficients for the current iteration will be equal to the sum of the vector of the coefficients obtained in the previous iteration and the coefficient increment vector as a result of solving a system of linear equations. Such an iterative process of identifying the thermophysical characteristics for each regularization parameter makes it possible to determine the mean-square discrepancy between the resulting temperature and the temperature measured as a result of the experiment. It remains to choose the regularization parameter so that this discrepancy is within the root-mean-square measurement error. Such a search, for example, is identical to algorithms for searching roots of nonlinear equations. When checking the efficiency of using the proposed method, a number of test problems were solved for bodies with known thermophysical characteristics. An analysis of the influence of random measurement errors on the error of the identifiable thermophysical characteristics of the body being studied was carried out.
Разработаны подходы к идентификации теплофизических характеристик с использованием методов решения обратных задач теплопроводности и метода регуляризации А. Н. Тихонова. По результатам проведенного эксперимента определяются зависящие от температуры коэффициент теплопроводности, теплоемкость, внутренние источники теплоты. При этом теплофизические характеристики аппроксимируются кубическими сплайнами Шёнберга, в результате чего их идентификация сводится к определению неизвестных коэффициентов в аппроксимированных зависимостях. Следовательно, температура в теле будет зависеть от этих коэффициентов и ее можно будет представить, используя два члена ряда Тейлора как линейную комбинацию ее частных производных по неизвестным коэффициентам, умноженных на приращения этих коэффициентов. Подставляя это выражение в функционал Тихонова и используя свойство минимума квадратичного функционала, можно свести решение задачи к решению системы линейных уравнений относительно приращений неизвестных коэффициентов. Выбрав некоторый параметр регуляризации и некоторые функции в качестве начального приближения, можно реализовать итерационный процесс, в котором вектор неизвестных коэффициентов для текущей итерации будет равен сумме вектора коэффициентов, полученных на предыдущей итерации, и вектора приращений коэффициентов в результате решения системы линейных уравнений. Такой итерационный процесс по идентификации теплофизических характеристик для каждого параметра регуляризации дает возможность определить среднеквадратическую невязку между получаемой температурой и температурой, измеренной в результате проведенного эксперимента. Остается подобрать параметр регуляризации таким образом, чтобы эта невязка была в пределах среднеквадратичной ошибки измерений. Такой поиск, например, идентичен алгоритмам поиска корня нелинейного уравнения. При проверке эффективности использования предложенного метода был решен ряд тестовых задач для тел с известными теплофизическими характеристиками. Проведен анализ влияния случайных погрешностей измерений на погрешность идентифицируемых теплофизических характеристик исследуемого тела.
Databáze: OpenAIRE