Optimisation of the calibration process of a k-tls based multi-sensor-system by genetic algorithms
Autor: | Hartmann, J., Von Gösseln, I., Schild, N., Dorndorf, A., Paffenholz, J.-A., Neumann, I., Vosselman, G., Oude, Elberink, S.J., Yang, M.Y. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
lcsh:Applied optics. Photonics
Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaften Terrestrial laser scanning Kinematics Laser scanning Computer science Object detection Qualitative assessments Kinematic Laser Scanning Geometry lcsh:Technology Genetic algorithm Calibration ddc:550 Seebeck effect Optimisation Scanning Steel beams and girders Konferenzschrift Genetic Algorithm Birefringence Orientation (computer vision) lcsh:T lcsh:TA1501-1820 Genetic algorithms Industrial production lcsh:TA1-2040 (Geo-)referencing Surveying instruments Uncertainty propagation Uncertainty analysis Position and orientations Focus (optics) lcsh:Engineering (General). Civil engineering (General) Algorithm Optimisations Laser applications |
Zdroj: | ISPRS Technical Commission III Symposium : 5 – 7 September 2014, Zurich, Switzerland The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLII-2/W13 The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-2-W13, Pp 1655-1662 (2019) |
ISSN: | 2194-9034 |
Popis: | In recent years, the requirements in the industrial production of elongated objects, e.g., aircraft, have been increased. An essential aspect of the production process is the 3D object detection as well as the qualitative assessment of the captured data. On the one hand high accuracy requirements with a 3D standard deviation of σ3D = 1 mm have to be fulfilled, on the other hand an efficient 3D object capturing is needed. In terms of efficiency, kinematic terrestrial laser scanning (k-TLS) has proven its strength in the recent years. It can be seen as an alternative and is even more powerful than to the well established static terrestrial laser scanning (s-TLS). In order to perform a high accurate 3D object capturing with k-TLS, the 3D object capturing of the initial sensor, the (geo-)referencing of the mobile platform, the synchronisation of all sensors and the system calibration, which means the determination of six extrinsic parameters have to be performed with suitable accuracy. Within this contribution we focus on the system calibration. Therefore an approach based on known reference geometries, here planes, is used (Strübing and Neumann, 2013). As a result, the lever arm and boresight angles are determined. Hereby the number as well as the position and orientation of the reference geometries is of importance. Therefore, an optimal arrangement has to be found. Here a sensitive analysis based on uncertainty propagation is used. A selective search of an optimised arrangement is carried out by a genetic algorithm. Within some examples we demonstrate some theoretical aspects and how an optimisation of the reference geometry arrangement can be achieved. |
Databáze: | OpenAIRE |
Externí odkaz: |