Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system
Autor: | Maarten Krol, J.S. Schröter, Eduardo Barbaro, Huug G. Ouwersloot, David Donovan, Jordi Vilà-Guerau de Arellano |
---|---|
Rok vydání: | 2014 |
Předmět: |
Meteorologie en Luchtkwaliteit
Atmospheric Science large-eddy-simulation Meteorology and Air Quality 010504 meteorology & atmospheric sciences Meteorology 010501 environmental sciences Atmospheric sciences 01 natural sciences Convective Boundary Layer Troposphere Atmosphere cloud climate Earth and Planetary Sciences (miscellaneous) Radiative transfer european integrated project Potential temperature Shortwave radiation global scales 0105 earth and related environmental sciences WIMEK model quality interactions eucaari energy-balance Aerosol optical-properties Geophysics 13. Climate action Space and Planetary Science ammonium-nitrate Capping inversion climate system Environmental science |
Zdroj: | Journal of Geophysical Research: Atmospheres, 119(10), 5845-5863 Journal of Geophysical Research: Atmospheres Journal of Geophysical Research: Atmospheres 119 (2014) 10 |
ISSN: | 2169-897X |
Popis: | By combining observations and numerical simulations, we investigated the responses of the surface energy budget and the convective boundary layer (CBL) dynamics to the presence of aerosols. A detailed data set containing (thermo)dynamic observations at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions was employed to design numerical experiments reproducing two typical clear-sky days, each characterized by contrasting thermodynamic initial profiles: (i) residual layer above a strong surface inversion and (ii) well-mixed CBL connected to the free troposphere by a capping inversion, without the residual layer in between. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, coupled to a broadband radiative transfer code and a land surface model, were used to study the impacts of aerosols on shortwave radiation. Both the LES model and the MXL model results reproduced satisfactorily the observations for both days. A sensitivity analysis on a wide range of aerosol properties was conducted. Our results showed that higher loads of aerosols decreased irradiance imposing an energy restriction at the surface, delaying the morning onset of the CBL and advancing its afternoon collapse. Moderately to strongly absorbing aerosols increased the heating rate contributing positively to increase the afternoon CBL height and potential temperature and to decrease Bowen ratio. In contrast, scattering aerosols were associated with smaller heating rates and cooler and shallower CBLs. Our findings advocate the need for accounting for the aerosol influence in analyzing surface and CBL dynamics. |
Databáze: | OpenAIRE |
Externí odkaz: |