Borel's Conjecture in Topological Groups

Autor: Marion Scheepers, Fred Galvin
Rok vydání: 2011
Předmět:
Zdroj: J. Symbolic Logic 78, iss. 1 (2013), 168-184
DOI: 10.48550/arxiv.1107.5383
Popis: We introduce a natural generalization of Borel's Conjecture. For each infinite cardinal number $\kappa$, let {\sf BC}$_{\kappa}$ denote this generalization. Then ${\sf BC}_{\aleph_0}$ is equivalent to the classical Borel conjecture. Assuming the classical Borel conjecture, $\neg{\sf BC}_{\aleph_1}$ is equivalent to the existence of a Kurepa tree of height $\aleph_1$. Using the connection of ${\sf BC}_{\kappa}$ with a generalization of Kurepa's Hypothesis, we obtain the following consistency results: (1)If it is consistent that there is a 1-inaccessible cardinal then it is consistent that ${\sf BC}_{\aleph_1}$. (2)If it is consistent that ${\sf BC}_{\aleph_1}$ holds, then it is consistent that there is an inaccessible cardinal. (3)If it is consistent that there is a 1-inaccessible cardinal with $\omega$ inaccessible cardinals above it, then $\neg{\sf BC}_{\aleph_{\omega}} \, +\, (\forall n
Comment: 15 pages
Databáze: OpenAIRE