Optimality condition decomposition approach to distributed model predictive control

Autor: Frederic Hamelin, Joseph J. Yame, Tejaswinee Darure, Nathalie Sauer, Tushar Jain, Farah Gabsi
Přispěvatelé: Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Indian Institute of Technology Mandi (IIT Mandi), Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Université de Lorraine (UL), gabsi, farah
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: American Control Conference, ACC 2019
American Control Conference, ACC 2019, Jul 2019, Philadelphia, PA, United States
ACC
Scopus-Elsevier
Popis: International audience; This paper presents a new methodology for distributed model predictive control of large-scale systems. The methodology involves two distinct stages, i.e., the decomposition of large-scale systems into subsystems and the design of subsystem controllers. Two procedures are used: in the first stage, the structure of the Karush-Kuhn-Tucker matrix resulting from the necessary optimality conditions is exploited to yield a decomposition of the large-scale system into several subsystems. In the second stage, a particular technique, the so-called optimality condition decomposition makes it possible to synthesize distributed coordinated subcontrollers thus achieving an optimal distributed control of the large-scale system. The convergence of the proposed approach is stated.
Databáze: OpenAIRE