BAYESIAN NODE CLASSIFICATION FOR NOISY GRAPHS

Autor: Hakim Hafidi, Philippe Ciblat, Mounir Ghogho, Ananthram Swami
Přispěvatelé: CIBLAT, Philippe, Université Internationale de Rabat (UIR), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Communications & Electronique (COMELEC), Télécom ParisTech, Communications Numériques (COMNUM), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Institut Polytechnique de Paris (IP Paris)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Computer science
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing
Bayesian probability
02 engineering and technology
01 natural sciences
[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
[MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[STAT.AP] Statistics [stat]/Applications [stat.AP]
0103 physical sciences
Classifier (linguistics)
010302 applied physics
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Degree (graph theory)
[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI]
business.industry
Node (networking)
Aggregate (data warehouse)
[MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT]
Pattern recognition
021001 nanoscience & nanotechnology
[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT]
Key (cryptography)
Benchmark (computing)
Artificial intelligence
Noise (video)
[INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT]
0210 nano-technology
business
MathematicsofComputing_DISCRETEMATHEMATICS
Zdroj: IEEE Statistical Signal Processing Workshop (SSP)
IEEE Statistical Signal Processing Workshop (SSP), 2021, Rio de Janeiro (virtual), Brazil
SSP
Popis: International audience; Graph neural networks (GNN) have been recognized as powerful tools for learning representations in graph structured data. The key idea is to propagate and aggregate information along edges of the given graph. However, little work has been done to analyze the effect of noise on their performance. By conducting a number of simulations, we show that GNN are very sensitive to the graph noise. We propose a graphassisted Bayesian node classifier which takes into account the degree of impurity of the graph, and show that it consistently outperforms GNN based classifiers on benchmark datasets, particularly when the degree of impurity is moderate to high.
Databáze: OpenAIRE