Structural biology of SARS-CoV-2 and implications for therapeutic development
Autor: | Zihe Rao, Haitao Yang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Subfamily
General Immunology and Microbiology SARS-CoV-2 viruses RNA COVID-19 Computational biology Review Article Genome Viral Biology Virus structures Entry into host Antivirals Virus-host interactions Microbiology Genome COVID-19 Drug Treatment Viral Proteins Infectious Diseases Drug Delivery Systems Structural biology Viral life cycle Viral replication Transcription (biology) |
Zdroj: | Nature Reviews. Microbiology |
ISSN: | 1740-1534 1740-1526 |
Popis: | The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented global health crisis. However, therapeutic options for treatment are still very limited. The development of drugs that target vital proteins in the viral life cycle is a feasible approach for treating COVID-19. Belonging to the subfamily Orthocoronavirinae with the largest RNA genome, SARS-CoV-2 encodes a total of 29 proteins. These non-structural, structural and accessory proteins participate in entry into host cells, genome replication and transcription, and viral assembly and release. SARS-CoV-2 proteins can individually perform essential physiological roles, be components of the viral replication machinery or interact with numerous host cellular factors. In this Review, we delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions. Elucidating the structure and function of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins is vital for understanding the molecular mechanisms of viral replication and COVID-19 pathogenesis, and could lead to the development of novel therapeutics. In this Review, Yang and Rao delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions. |
Databáze: | OpenAIRE |
Externí odkaz: |