Smart Air Quality Network for spatial high-resolution monitoring in urban area
Autor: | Till Riedel, Andreas Philipp, Christoph Münkel, Stefan Emeis, Johannes Riesterer, Volker Ziegler, Thomas Gratza, Stefan Hinterreiter, Erik Lundtang Petersen, Michael Beigl, Jürgen Schnelle-Kreis, Klaus Schäfer, Hans Grimm, Josef Cyrys, Ulrich Uhrner, Matthias Budde, Markus Pesch, Johannes Werhahn, J. Redelstein, Marcus Hank |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Profiling (computer programming)
Network architecture UAV DATA processing & computer science emissions environmental sensing Missing data air quality Ceilometer Data-driven ceilometer Depth sounding Data access exposure Environmental science Air Quality Emissions Environmental Sensing Exposure Uav ddc:004 Air quality index Remote sensing |
Zdroj: | Proc. SPIE 10786:107860B (2018) |
Popis: | A pragmatic, data driven approach, which for the first time combines existing in situ and remote sensing data sets with a networked mobile air pollutant measurement strategy in the urban space is an objective of the Smart Air Quality Network (SmartAQnet) project. It aims to implement an intelligent, reproducible, finely-tuned (spatial, temporal), yet cost-effective air quality measuring network, initially in the model region of Augsburg, Germany. Central to this is the development and utilization of partial, already existing (but not yet combined) data on the one hand and the collection and integration of relevant missing data on the other hand. Unmanned aerial vehicles (UAV) with low-weight meteorological sensors and particle counter are used to monitor the three-dimensional dynamics of the lower atmosphere. Ground-based remote sensing by ceilometer for mixing layer height detection as well as a Radio-Acoustic Sounding System (RASS) for temperature and wind profile measurements at the University campus complete the new network architecture and UAV height profiling of atmospheric parameters. The SmartAQnet research initiative focuses on the subject of data access and data-based applications. Such complex monitoring provides the basis of deeper process understanding of air pollution exposure. The network architecture is shown and first results about spatial variation of meteorological influences upon air pollution exposure is presented using ceilometer, UAV and the existing monitoring network data. |
Databáze: | OpenAIRE |
Externí odkaz: |