First Principles Calculations of Charge Transfer Excitations in Polymer-Fullerene Complexes: Influence of Excess Energy
Autor: | Silvio Osella, Stephan Kümmel, Xavier Blase, Dorota Niedzialek, Ivan Duchemin, David Beljonne, Thiago Branquinho de Queiroz, Richard H. Friend, Akshay Rao |
---|---|
Přispěvatelé: | Blackett Laboratory, Imperial College London, Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Universität Bayreuth, Cavendish Laboratory, University of Cambridge [UK] (CAM), Laboratory for Chemistry of Novel Materials, Université de Mons (UMons), Théorie de la Matière Condensée (TMC), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), ANR-12-BS04-0001,PANELS,Simulations ab initio innovantes pour le photovoltaïque(2012), European Project: 211528,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2007-1,PRACE(2008), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Théorie de la Matière Condensée (NEEL - TMC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2014 |
Předmět: |
Greens-Functions Theory
Organic Solar-Cells Materials science Organic solar cell Many-body theory Ab initio Quantum simulator Electronic structure 7. Clean energy Acceptor Separation Biomaterials Many-Body Theory Density-Functional Theory Electrochemistry Quantum Charge-Transfer Excitations Hot Exciton [PHYS]Physics [physics] Organic Solar Cells Electronic Excitations Condensed Matter Physics Recombination Electronic Optical and Magnetic Materials Blends Chemical physics Density functional theory Quantum efficiency Carrier Atomic physics Dissociation |
Zdroj: | Advanced Functional Materials Advanced Functional Materials, Wiley, 2015, 25 (13), pp.1972-1984. ⟨10.1002/adfm.201402682⟩ Advanced Functional Materials, 2015, 25 (13), pp.1972-1984. ⟨10.1002/adfm.201402682⟩ |
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201402682 |
Popis: | International audience; The ability of quantum simulations to predict the electronic structure at donor/acceptor interfaces and correlate it with the quantum efficiency of organic solar cells remains a major challenge. The need to describe with increased accuracy electron-electron and electron-hole interactions, while better accounting for disorder and environmental screening in realistic interfaces, requires significant progress to improve both the accuracy and computational efficiency of available quantum simulation methods. In the present study, the results of different ab initio techniques are compared, namely time-dependent density functional and many-body perturbation theories, with experimental data on three different polymer/fullerene heterojunctions. It is shown that valuable information concerning the thermodynamic drive for electron-hole dissociation or recombination into triplets can be obtained from such calculations performed on model interfaces. In particular, the ability of these approaches to reproduce the Veldman and co-workers classification of the three studied interfaces is discussed, showing the success and limits of state-of-the-art ab initio techniques. |
Databáze: | OpenAIRE |
Externí odkaz: |