Electrochemical Atomic Force Microscopy Using a Tip-Attached Redox Mediator for Topographic and Functional Imaging of Nanosystems
Autor: | Agnès Anne, Christophe Demaille, Cédric Goyer, Arnaud Chovin, Edmond Cambril |
---|---|
Rok vydání: | 2009 |
Předmět: |
technology
industry and agriculture General Engineering General Physics and Astronomy Substrate (chemistry) Nanotechnology Polyethylene glycol Microscopy Atomic Force Electrochemistry Molecular Imaging Nanostructures Polyethylene Glycols chemistry.chemical_compound Ferrocene chemistry Microscopy PEG ratio General Materials Science Nanometre Reactivity (chemistry) Oxidation-Reduction |
Zdroj: | ACS Nano. 3:2927-2940 |
ISSN: | 1936-086X 1936-0851 |
Popis: | We describe the development of a new type of high-resolution atomic force electrochemical microscopy (AFM-SECM), labeled Tarm (for tip-attached redox mediator)/AFM-SECM, where the redox mediator, a ferrocene (Fc), is tethered to the AFM-SECM probe via nanometer long, flexible polyethylene glycol (PEG) chains. It is demonstrated that the tip-attached ferrocene-labeled PEG chains effectively shuttle electrons between the tip and substrate, thus acting as molecular sensors probing the local electrochemical reactivity of a planar substrate. Moreover the Fc-PEGylated AFM-SECM probes can be used for tapping mode imaging, allowing simultaneous recording of electrochemical feedback current and of topography, with a vertical and a lateral resolution in the nanometer range. By imaging the naturally nanostructured surface of HOPG, we demonstrate that Tarm/AFM-SECM microscopy can be used to probe the reactivity of nanometer-sized active sites on surfaces. This new type of SECM microscopy, being, by design, free of the diffusional constraints of classical SECM, is expected to, in principle, enable functional imaging of redox nanosystems such as individual redox enzyme molecules. |
Databáze: | OpenAIRE |
Externí odkaz: |