Pbx Proteins in Cryptococcus neoformans Cell Wall Remodeling and Capsule Assembly
Autor: | Tamara L. Doering, Christian Heiss, Pardeep Kumar, Ian Black, Felipe H. Santiago-Tirado, Parastoo Azadi |
---|---|
Rok vydání: | 2014 |
Předmět: |
Glycan
Virulence Factors Molecular Sequence Data Mutant Cell Virulence Cell morphology Microbiology Fungal Proteins Cell wall Fungal Capsules Cell Wall Polysaccharides medicine Humans Molecular Biology Abnormal cell morphology Fungal protein biology Cryptococcosis Articles General Medicine Cell biology medicine.anatomical_structure Carbohydrate Sequence Cryptococcus neoformans biology.protein |
Zdroj: | Eukaryotic Cell. 13:560-571 |
ISSN: | 1535-9786 1535-9778 |
DOI: | 10.1128/ec.00290-13 |
Popis: | The cryptococcal capsule is a critical virulence factor of an important pathogen, but little is known about how it is associated with the cell or released into the environment. Two mutants lacking PBX1 and PBX2 were found to shed reduced amounts of the capsule polysaccharide glucuronoxylomannan (GXM). Nuclear magnetic resonance, composition, and physical analyses showed that the shed material was of normal mass but was slightly enriched in xylose. In contrast to previous reports, this material contained no glucose. Notably, the capsule fibers of pbx Δ mutant cells grown under capsule-inducing conditions were present at a lower than usual density and were loosely attached to the cell wall. Mutant cell walls were also defective, as indicated by phenotypes including abnormal cell morphology, reduced mating filamentation, and altered cell integrity. All observed phenotypes were shared between the two mutants and exacerbated in a double mutant. Consistent with a role in surface glycan synthesis, the Pbx proteins localized to detergent-resistant membrane domains. These results, together with the sequence motifs in the Pbx proteins, suggest that Pbx1 and Pbx2 are redundant proteins that act in remodeling the cell wall to maintain normal cell morphology and precursor availability for other glycan synthetic processes. Their absence results in aberrant cell wall growth and metabolic imbalance, which together impact cell wall and capsule synthesis, cell morphology, and capsule association. The surface changes also lead to increased engulfment by host phagocytes, consistent with the lack of virulence of pbx mutants in animal models. |
Databáze: | OpenAIRE |
Externí odkaz: |