Use of serum hyaluronic acid as a biomarker of endothelial glycocalyx degradation in dogs with septic peritonitis

Autor: Alexa M E Bersenas, Liz-Valerie S. Guieu, R. Darren Wood, Shauna L. Blois, Kaela E. Shaw, Shane W. Bateman
Rok vydání: 2021
Předmět:
Zdroj: American Journal of Veterinary Research. 82:566-573
ISSN: 0002-9645
DOI: 10.2460/ajvr.82.7.566
Popis: OBJECTIVE To describe daily changes in serum concentrations of hyaluronic acid (HA), a biomarker of endothelial glycocalyx degradation, in dogs with septic peritonitis and to determine whether relationships exist among serum concentrations of HA and biomarkers of inflammation and patient fluid status. ANIMALS 8 client-owned dogs. PROCEDURES Serum samples that had been collected for a previous study and stored at −80°C were used. Blood samples were collected at admission and daily thereafter during hospitalization and were analyzed for concentrations of HA and interleukins 6, 8, and 10. Patient data including acute patient physiologic and laboratory evaluation score, type and amount of fluids administered daily, and daily CBC and lactate concentration results were recorded. To determine the significant predictors of HA concentration, a general linear mixed model for repeated measures was developed. RESULTS All dogs survived to discharge. Concentrations of HA ranged from 18 to 1,050 ng/mL (interquartile [25th to 75th percentile] range, 49 to 119 ng/mL) throughout hospitalization. Interleukin-6 concentration was a significant predictor of HA concentration as was total administered daily fluid volume when accounting for interleukin-6 concentration. When fluid volume was analyzed independent of inflammatory status, fluid volume was not a significant predictor. Concentrations of HA did not significantly change over time but tended to increase on day 2 or 3 of hospitalization. CONCLUSIONS AND CLINICAL RELEVANCE Results supported the theory that inflammation is associated with endothelial glycocalyx degradation. Dogs recovering from septic peritonitis may become more susceptible to further endothelial glycocalyx damage as increasing fluid volumes are administered.
Databáze: OpenAIRE