Autor: |
Hao Yang, Fusheng Li, Shaoqi Zhan, Yawen Liu, Wenlong Li, Qijun Meng, Alexander Kravchenko, Tianqi Liu, Yi Yang, Yuan Fang, Linqin Wang, Jiaqi Guan, István Furó, Mårten S. G. Ahlquist, Licheng Sun |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nature Catalysis. 5:414-429 |
ISSN: |
2520-1158 |
DOI: |
10.1038/s41929-022-00783-6 |
Popis: |
Exploration of efficient water oxidation catalysts (WOCs) is the primary challenge in conversion of renewable energy into fuels. Here we report a molecularly well-defined heterogeneous WOC with Aza-fused, π-conjugated, microporous polymer (Aza-CMP) coordinated single cobalt sites (Aza-CMP-Co). The single cobalt sites in Aza-CMP-Co exhibited superior activity under alkaline and near-neutral conditions. Moreover, the molecular nature of the isolated catalytic sites makes Aza-CMP-Co a reliable model for studying the heterogeneous water oxidation mechanism. By a combination of experimental and theoretical results, a pH-dependent nucleophilic attack pathway for O-O bond formation was proposed. Under alkaline conditions, the intramolecular hydroxyl nucleophilic attack (IHNA) process with which the adjacent -OH group nucleophilically attacks Co4+=O was identified as the rate-determining step. This process leads to lower activation energy and accelerated kinetics than those of the intermolecular water nucleophilic attack (WNA) pathway. This study provides significant insights into the crucial function of electrolyte pH in water oxidation catalysis and enhancement of water oxidation activity by regulation of the IHNA pathway. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|