Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons

Autor: Julia Bos, Alexandra Vergnes, Benjamin Ezraty, Olga Iranzo, Emmanuel Oheix, Joanna Szewczyk, Alexandra Gennaris, Pauline Leverrier, Rym Agrebi, Frédéric Barras, Didier Vertommen, Camille Henry, Jean-François Collet, Leon Espinosa
Přispěvatelé: Walloon Excellence in Life sciences and BIOtechnology [Liège] (WELBIO), de Duve Institute and Université catholique de Louvain, Université Catholique de Louvain = Catholic University of Louvain (UCL)-de Duve Institute, Brussels Center for Redox Biology, 1050 Brussels, Belgium, Brussels Center for Redox Biology, Laboratoire de chimie bactérienne (LCB), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC), Institut de Microbiologie de la Méditerranée (IMM), De Duve Institute, Université Catholique de Louvain (UCL), de Duve Institute, Université catholique de Louvain, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), de Duve Institute, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2015
Předmět:
Zdroj: Nature
Nature, Nature Publishing Group, 2015, 528 (7582), pp.409-412. ⟨10.1038/nature15764⟩
Nature, Nature Publishing Group, 2015, 528 (7582), pp.409+. ⟨10.1038/nature15764⟩
Nature, 2015, 528 (7582), pp.409-412. ⟨10.1038/nature15764⟩
ISSN: 1476-4687
0028-0836
1476-4679
Popis: International audience; The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts(1-3). Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.
Databáze: OpenAIRE