Embedding spheres in knot traces

Autor: Mark Powell, Allison N. Miller, Arunima Ray, Peter Feller, Matthias Nagel, Patrick Orson
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Compositio Mathematica
Compositio Mathematica, 2021, Vol.157(10), pp.2242-2279 [Peer Reviewed Journal]
Compositio Mathematica, 157 (10)
ISSN: 0010-437X
1570-5846
Popis: The trace of the -framed surgery on a knot in is a 4-manifold homotopy equivalent to the 2-sphere. We characterise when a generator of the second homotopy group of such a manifold can be realised by a locally flat embedded -sphere whose complement has abelian fundamental group. Our characterisation is in terms of classical and computable -dimensional knot invariants. For each, this provides conditions that imply a knot is topologically -shake slice, directly analogous to the result of Freedman and Quinn that a knot with trivial Alexander polynomial is topologically slice.
Compositio Mathematica, 157 (10)
ISSN:0010-437X
ISSN:1570-5846
Databáze: OpenAIRE