Evaluation of separation in gradient elution ion chromatography by combining several retention models and objective functions

Autor: Marko Rogošić, Tomislav Bolanča, Štefica Cerjan-Stefanović, Šime Ukić, Melita Luša
Rok vydání: 2008
Předmět:
Zdroj: Journal of Separation Science. 31:705-713
ISSN: 1615-9314
1615-9306
DOI: 10.1002/jssc.200700470
Popis: In this work, three different methods for modeling of gradient retention were combined with several optimization objective functions in order to find the most appropriate combination to be applied in ion chromatography method development. The system studied was a set of seven inorganic anions (fluoride, chloride, nitrite, sulfate, bromide, nitrate, and phosphate) with a KOH eluent. The retention modeling methods tested were multilayer perceptron artificial neural network (MLP-ANN), radial-basis function artificial neural network (RBF-ANN), and retention model based on transfer of data from isocratic to gradient elution mode. It was shown that MLP retention model in combination with the objective function based on normalized retention difference product was the most adequate tool for optimization purposes.
Databáze: OpenAIRE