Popis: |
To evaluate the diagnostic performance of the transfer learning approach for grading diagnosis of ACL injury on a new modified dual precision positioning of thin-slice oblique sagittal FS-PDWI (DPP-TSO-Sag-FS-PDWI) sequence. And compare the prediction performances between artificial intelligence (AI) and radiologists.Patients with both DPP-TSO-Sag-FS-PDWI sequence and arthroscopic results were included. We performed a transfer learning approach using the pre-trained EfficientNet-B0 model, including whole image and regions of interest (ROI) image inputs, and reset its parameters to achieve an automatic hierarchical diagnosis of ACL.A total of 235 patients (145 men and 90 women, 37.91 ± 14.77 years) with 665 images were analyzed. The consistencies of AI and arthroscopy (Kappa value 0.94), radiologists and arthroscopy (Kappa value 0.83, p = 0.000) were almost perfect. No statistical difference exists between the whole image and radiologists in the diagnosis of normal ACL (p = 0.063) and grade 3 injury (p = 1.000), while the whole image was better than radiologists in grade 1 (p = 0.012) and grade 2 injury (p = 0.003).The transfer learning approach exhibits its feasibility in the diagnosis of ACL injury based on the new modified MR DPP-TSO-Sag-FS-PDWI sequence, suggesting that it can help radiologists hierarchical diagnose ACL injuries, especially grade 2 injury. |