Dephasing by a nonstationary classical intermittent noise

Autor: Pascal Degiovanni, Maxime Clusel, Josef Schriefl, David Carpentier
Přispěvatelé: Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institüt für Theoretische Festkörperphysik (ITFK), Universität Karlsruhe (TH), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Quantum decoherence
Dephasing
FOS: Physical sciences
01 natural sciences
Noise (electronics)
010305 fluids & plasmas
Background noise
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
Phenomenological model
Statistical physics
[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]
decoherence
PACS: 03.65.Yz
05.40.-a
05.40.Ca
010306 general physics
[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]
Physics
Quantum Physics
Condensed Matter - Mesoscale and Nanoscale Physics
1/f noise
aging
Condensed Matter Physics
Random walk
Coupling (probability)
Electronic
Optical and Magnetic Materials

73.23.−b
03.65.Yz
73.50.Td
05.40.Ca

Quantum Physics (quant-ph)
Continuous-time random walk
Zdroj: Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2005, 72, pp.035328. ⟨10.1103/PhysRevB.72.035328⟩
Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2005, 72, pp.035328. ⟨10.1103/PhysRevB.72.035328⟩
ISSN: 1098-0121
1550-235X
DOI: 10.1103/PhysRevB.72.035328⟩
Popis: We consider a new phenomenological model for a $1/f^{\mu}$ classical intermittent noise and study its effects on the dephasing of a two-level system. Within this model, the evolution of the relative phase between the $|\pm>$ states is described as a continuous time random walk (CTRW). Using renewal theory, we find exact expressions for the dephasing factor and identify the physically relevant various regimes in terms of the coupling to the noise. In particular, we point out the consequences of the non-stationarity and pronounced non-Gaussian features of this noise, including some new anomalous and aging dephasing scenarii.
Comment: Submitted to Phys. Rev. B
Databáze: OpenAIRE